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Since, for every r, we can choose p and a so that \p(T
T^0 

and \p<r
T' = 0 for TT^T, we conclude from (13) that 

xaT = 0. Thus lEa,Lp] = 0 and Eq. (1) holds. 
The theorem also holds for any compact internal 

symmetry group.4 Then, if the group is not semisimple, 
it is the direct product of a semisimple group and an 
Abelian group (toroid). The generators of the toroid 
commute with all the generators of the internal sym-

4 L. Pontryagin, Topological Groups (Princeton University Press, 
Princeton, New Jersey, 1939), p. 282. 

me try group, and the proof of Eq. (6) remains un­
changed. 

Our proof does not exclude the possibility that the 
internal symmetry group and the Lorentz group are 
embedded in some larger symmetry group.5 If this is 
the case, one must face the problem of interpreting the 
additional symmetry operations associated with this 
larger group. 

5 For a particular attempt, cf. Ref. 1. 
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The following processes of 2 octets transforming into 2 octets are discussed on the basis of crossing sym­
metry; P+B -> P+B, B+B -» B+B, P+V -> P+V, • • • and their crossed channels, where Bf P, and V 
represent baryons, pseudoscalar mesons, and vector mesons, respectively. The relation between channel 
amplitudes, the number of independent channel amplitudes, and spin selection rules are systematically 
obtained. 

A SET of states that transform into one another 
under the unitary transformations SU3 will 

form multiplets that are labeled by two quantum 
numbers (X,M)- In the octet model,1,2 the baryons 
.£= (7V,2,A,E), the antibaryons B, the pseudoscalar 
mesons P= (K,Tr,rj,K), and the vector mesons V 
= (i£*,p,$°,i?*) are assigned to the (1,1) representation 
of the group SU3. The amplitude (ab | cd) for the reaction 
a+b —>c+d can be described as two octets trans­
forming into two other octets. 

Two octets (1,1) can couple together to form the 
product representations (2,2), (l,l)s, (0,0), (0,3), (3,0), 
and (1,1)a. The representation (1,1) s transforms with a 
positive phase whereas the representation (1,1) a trans­
forms with a negative phase under an R transformation1 

that is independent of SU3. There are thus six channel 
amplitudes A27, Ass, Ah AIQ, A10, and A8a which are 
diagonal elements of the S matrix for the representations 
(2,2),'(1,1)., (0,0), (0,3), (3,0), and (1,1)0, respectively. 
There are also two nondiagonal channel amplitudes 
Aas and Asa that couple the representations (l,l) s and 
(1,1).. 

One can sometimes obtain relations among the channel 
amplitudes by use of invariance under time rever­
sal, (ab I cd) —> (cd \ ab), charge conjugation, (ab | cd) —-> 

f Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

* On leave of absence from the Department of Physics, Tokoku 
University, Sendai, Japan. 

1 M . Gell-Mann, Phys. Rev. 125, 1067 (1962); California 
Institute of Technology Report CTSL-20, 1961 (unpublished). 

2 Y. Ne'eman, Nucl. Phys. 26, 222 (1961). 

(db\cd), and parity operation—all of which hold in the 
strong interactions—together with crossing symmetry. 
We shall see that most of the relations follow only from 
time-reversal invariance in the direct channel (channel 
i). 

Let us define the three channels I, II, and III as 
follows: 

Channel I : (ab\ cd), amplitude=A ; 
Channel I I : (ca \ db), amplitude=B; 

Channel III : (cb \ ad), amplitude=C. 

Then the amplitudes A, B, and C are related to each 
other by crossing symmetry; i.e., A = O2B and A = 03C, 
where the crossing matrices O2 and 03 are3,4 

3 From the crossing matrix for A —0<iB, one can obtain A=OzC 
in the following way: 

O3 -

(ab\cd) -> (ba\cd) -> (ca\bd) -> (ca\db), 
0% 

(ab\cd) -> (Ca\db). 

This results in Aa —> —Aa, A as —> —Aas, Ca-+ —Ca, and Csa —> 
— Csa, where Aa represents AIQ, AI0, and A8a. 4 The crossing matrix has been considered by R. E. Cutkosky, 
Ann. Phys. 23, 405 (1963); D. E. Neville, Phys. Rev. 132, 844 
(1963); J. J. de Swart, NuovoCimento 31, 420 (1964). We thank 
S. Okubo and B. Lee for pointing this out. Equation (1) is read as 

A27^^B27+^Bss-\--Bi — —Bio~-—Bio—~B8a, etc. 

The implications of time-reversal in elastic scattering in con­
nection with SU3 have been remarked on by P. G. O. Freund, 
H. Ruegg, D. Speiser, and A. Morales, Nuovo Cimento 25, 307 
(1962); P. Tarjanne, Ann. Acad. Sci. Fennicae Ser. A VI, 105 
(1962). 
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the upper and lower signs being referred to 0 2 and 03 , 
respectively. From matrices (1), it follows immediately 
that 

Aa,=A8a*-*Bui=B1Q<r+Ca8=C8a, (2) 

Aw=A10*->Bas = Bsa±->Cas=-Csa, (3) 

Aas=— Asa*->Bas=— Bsa<->Ci$=C10, (4) 

where <-> means that one equality implies the other. 
(1) P+B - > P + P ( > = P , 6 = 5 , c=P, d=B or a = F , 

6 = 5 , c= F , d=B). Time-reversal invariance in channel 
I leads to A as—A sa so that Eq. (2) holds and thus there 
are seven independent amplitudes. The relation 
Pi5=Pio can also be obtained, in general, from in­
variance under the product of C (charge conjugation) 
and P (parity operation) in the channel that has 
nucleon number zero—except for B+B —>P+F, in 
which case there are eight independent amplitudes. 

(2) B+B-+B+B(a=B, b=B, c=B,d=B). Again 
Eq. (2) follows from time-reversal invariance. In 
addition, one has CUJ= Cio because channels I I (B+B —-» 
B+B) and I I I (B+B —> B+B) are similar except that 
the final particles appear in a different order, so that 
Eq. (4) holds. Then, it follows from Eqs. (2) and (4) 
that 

^4as = ^4 s a =0; Bju—Bio, Bas — ~Bas: 

^ as vx s Cio=Ci 

b=V,c=V,d=V). Time-reversal invariance in channel 
I leads to A as=Asa and Eq. (2). Since channels I I and 
I I I are identical, Bas=Bsa and Cig=Cio and thus also 
Eqs. (3) and (4) hold. Then Eqs. (2), (3), and (4) 
lead to R invariance and there are five independent 
amplitudes. 

(4) P+P->V+V(a=P, b=P, c=V, d=V). Let 
(PiP2\V1V2), (V1P1\V2P2), and (F iP 2 | P iF 2 ) be 
channels I, I I , and I I I . Time-reversal invariance in 
channel I I leads to P a s = P s a so that Eq. (3) holds. 
Also time-reversal invariance in channel I I I leads to 

v^d v d ) Oas v s a j ^ sa ^ a (5) 

and there are six independent amplitudes. 
(3) P+P - » P+P(a=P, b = P, c=P, d=P or a= F , 

where Ca stands for the diagonal amplitudes and the 
prime denotes amplitudes of the form ( P F | VP). Next, 
CP invariance in channel I I leads to 

(VaPb | PoVd) = (CP(VaPb) | CP(PcVd)) 
= (RE(PaVb)\RE(VcPd)), 

where R is the P-conjugation operator and P |F aP&) 
= I F&P«). Here Va is the member of the V octet that 
corresponds to the member Pa of the P octet. One then 
obtains C—C except for Cio=Ci$ and CTJS=CIO. This 
is because R operator interchanges Cio and Cio; and 
both R and E operators change the signs of Cas and 
Csa. Combining these relations with Eq. (5), one has 
CW=CIQ and Cas=Csa so that also Eqs. (2) and (4) 
hold, and R invariance is satisfied. In other words, 
for cases (3) and (4) essentially time-reversal invariance 
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TABLE I. Relations between channel amplitudes. 

Process 

PB -* PB, VB -> VB 
BB*->PP,BB^VV 
BB-+BB 
BB-+BB 
PP -> PP, VV -> VV 
PV ->PV,PP<->VV 

Relations 

Aas=Asa 

BlQ~BlQ 

•A-as~ A sa — v) 

Clo = Cio, Cas — CSa 

A\Q = A I Q , Aas—Asa' - 0 
(R conjunction invariant 

Number of 
independent 
amplitudes 

7 
7 
6 
6 

ce) 

and crossing symmetry lead to R invariance. This result 
holds because the octets P and V contain their charge 
conjugates. The results are summarized in Table I. 

One can use the above results for the channels with 
nucleon number zero (except for B-\-B —> P+V) in 
order to obtain some spin selection rules in a simple way. 
Let s be the magnitude of the total intrinsic spin of the 
system. Then for any state | ab) one has5 

CP\ab)=(~l)sRE\ab) 
for VV and PP(s = 0) systems, (6) 

CP | ab) = ( - ly^RE | ab) for the BB system, 

where E\ab)= \arbf), in which a'(b') is the particle 
corresponding to b{a) in the octet to which a(b) belongs. 
For example, E\pa2p+) = |2a~E,T*), where the indices a 
and 0 indicate the spin state of each particle. (In 

5 This follows from the fact that: C\ab)=R\ab) and P\ab) 
= (-l)sE\ab) for VV and PP(s = 0) systems, C\ab) = (-l)s+L 

XRE\ab) and P\ab) = -(-l)L\ab) for the BB system, where L 
is the magnitude of the orbital angular momentum. 

Process 

Selection 
ru le a 

TABLE II. Spin selection rules. 

BB --+BB VV -* VV VV <-> PP BB *-> PP BB <-> VV 

si—sf Si-\-Sf=even 5 = 0 , 2 5 = 1 5 i + 5 / = o d d 

a The indices i and / denote the initial and the final states, respectively, 
and 5 means the magnitude of the total intrinsic spin. 

particular, for the PP system, the E operation is 
equivalent to the particle exchange.) 

Now CP invariance and Eq. (6) lead to 

(ab \cd) = ± (RE (ab) | RE (cd)). (7) 

The sign to be used depends on the initial and final 
values of s. In terms of channel amplitudes, the negative 
sign in Eq. (7) means that ^4=0 except for Aio and 
Aio for which Aio= — Am However, as has been shown 
before, time-reversal invariance in the crossed channel 
of the processes considered here and the crossing 
symmetry lead to ^1IO=^4ID SO that the case of negative 
sign in Eq. (7) also implies that ^4io=^4io=0. Hence 
all the amplitudes are zero. Therefore, the sign in Eq. 
(7) should always be positive,6 and one obtains the 
spin selection rules listed in Table II . Here one can see, 
for example, that a nucleon-antinucleon pair can decay 
into two pseudoscalar mesons only from spin-triplet 
states. 

One of the authors [K. I . ] would like to express his 
gratitude to the theoretical physicists at Argonne 
National Laboratory for the warm hospitality they 
have extended to him. 

6 This implies the invariance under the RE operation and leads 
to A jo = A io, which is consistent with the result obtained before. 
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Various forms of the production amplitude are proposed which are convenient for the three-particle uni­
tarity integral. Both exact and approximate forms are discussed. It is found that in both cases one can sepa­
rate the final-state configuration from the over-all kinematics by using discrete variables. Form factors with 
the three-particle intermediate state are also discussed. 

I. INTRODUCTION 

ONE of the outstanding difficulties in dispersion 
theory is the problem of unitarity integral in­

volving more than two particles in the intermediate 
state.1 Although many attempts have been made to 

* Work supported in part by the U. S. Air Force and the 
National Science Foundation. 

1 See, for instance, G. F. Chew, S-Matrix Theory of Strong 
Interactions (W. A. Benjamin, Inc., New York, 1961). 

amend this difficulty, the crude two-particle approxi­
mation seems to be the only method giving useful re­
sults.2 In the case of three-particle intermediate state, 
various authors considered simple Feynman diagrams 
to study analytic properties of the absorptive part.3 I t 

2 L. F. Cook and B. W. Lee, Phys. Rev. 127, 283 (1962). 
3 V. N. Gribov and I. T. Dyatlov, Zh. Eksperim. i Teor. Fiz. 42, 

196 (1962); 42, 1268 (1962) [English transls.: Soviet Phys.— 
JETP 15, 140 (1962); 15, 879 (1962)]; Y. S. Kim, Phys. Rev. 132, 
927 (1963). 


